多晶硅不同晶面陷阱坑形貌与陷光效应的关系

王坤霞1 冯仕猛1 徐华天1 田嘉彤1 杨树泉2 黄建华3 裴 骏4

¹上海交通大学物理系,上海 200240;²上海航天技术研究院,上海 201109

(。

摘要 提出了多晶硅表面陷阱坑内表面高次绒面的陷光模型。利用测不准原理,分析了光子散射方向与绒面上凸 点大小的关系,利用光学傅里叶变换推导了光子逃逸陷阱坑概率与绒面陷阱坑形貌的关系。理论分析结果表明内 表面布满凹凸点的 U字形陷阱坑反射率比 V 字形的低;而内表面光滑的 U 字形陷阱坑的反射率比 V 字形的高。 利用扫描电子显微镜拍摄了碱液刻蚀的多晶硅样品表面图像,分析了碱液刻蚀的不同晶面陷阱坑的形貌。[100] 晶面呈峡谷状的陷阱坑,[111]晶面呈扭曲的 U 字形凹坑,[110]晶面则显示混合结构。实验测量了样品不同晶面 的反射率曲线,证实了 U 字形陷阱坑的绒面具有相对低的反射率,与理论分析结果基本吻合。

关键词 表面光学;多晶硅;表面结构;陷光效应;反射率

中图分类号 TM914.4 文献标识码 A doi: 10.3788/AOS201232.0324001

Relation Between the Multicrystalline Silicon Surface Structure and the Pit-Trap Effect

Wang Kunxia¹ Feng Shimeng¹ Xu Huatian¹ Tian Jiatong¹ Yang Shuquan² Huang Jianhua³ Pei Jun⁴

¹Department of Physics, Shanghai Jiao Tong University, Shanghai 200240, China

² Shanghai Academy of Spaceflight Technology, Shanghai 201109, China

³ Solarfun Power Holdings Solarfun Solar Shanghai Jiao Tong University Research and Development Center,

Shanghai 200240, China

⁴ Shanghai Shenzhou New Energy Source Development Co., Ltd., Shanghai 201112, China

Abstract An optimization etching model of the traps surface is proposed for the multicrystalline silicon surfaces. Based on uncertainty principle, the dependence of the photon scattering direction on the size of salient point on the internal surface of trap-pit is studied. The relationship between the topography of pit and the reflectivity is deduced using Fourier transformation. The theoretical analysis results indicate that the U-trap with the internal surface full of salient points has low reflectivity compared with V-trap with the internal surface full of salient points. However, the reflectivity of U-trap with the smooth internal surface is higher than that of the V-trap. The topography of multicrystalline silicon surface in different models textured with alkaline solution are observed by scanning electron microscope. It is found that [100], [111] and [110] planes is covered with canyon-structures, distorted U-trap and hybrid structures, respectively. The reflectances of different crystallographic planes are measured, showing that the U-trap's reflectance is the smallest. And it proves the proposed model.

Key words optics at surfaces; multicrystalline silicon; surface structure; light trapping effect; reflectivity OCIS codes 240.6700; 350.6050; 040.6040

1 引 言

提高硅基太阳能电池的能量转换效率有许多技术途径^[1~3],对多晶硅表面进行修饰是其中的核心

技术之一。在理想的情况下使多晶硅表面均匀分布 V字形的陷阱坑,成绒面结构,让光能在硅表面经过 多次反射和折射,降低对光的反射率,从而使更多的

导师简介:冯仕猛(1964—),男,副教授,主要从事晶体硅表面微结构调节技术和晶体硅太阳能电池方面的研究。

收稿日期: 2011-08-19; 收到修改稿日期: 2011-09-05

基金项目:上海航天基金(GC072003)资助课题。

作者简介:王坤霞(1986—),女,硕士研究生,主要从事晶体硅表面制绒方面的研究。E-mail. wkxsherry@126.com

E-mail: smfeng@sjtu.edu.cn(通信联系人)

光进入到晶体硅中,这就是多晶硅的陷光效应[4,5]。 实验上研究多晶硅绒面的文献比较多,鉴于多晶硅 表面是由不同的晶面组成的,所以可以采用物理方 法制备多晶硅绒面。如激光刻槽是被广泛研究的一 种表面制绒方法,利用激光在多晶硅表面刻蚀出非 常规则的倒金字塔形陷阱坑,此种技术获得的表面 反射率能下降到 23%以下[6];采用离子刻蚀[7] 能去 除多晶硅表面的机械损伤层,陷阱坑深度小于6 um,但表面绒面陷阱坑开口大,陷光效应差,平均测 量反射率达 25%以上。物理方法需要相对复杂的 处理工序和昂贵的加工系统,物理方法制备多晶硅 绒面后需要用化学方法去掉表面损伤层,降低表面 缺陷态密度。湿化学腐蚀绒面技术是多晶硅太阳电 池研究的核心技术之一,但多晶硅的化学腐蚀制绒技 术还远不成熟。采用化学方法制备多晶硅绒面,通常 采用酸性液体和碱性液体对多晶硅表面进行刻蚀,在 一定的条件下能获得具有良好陷光效应的陷阱坑。 利用酸可在晶体硅表面获得低反射率的蚯蚓状陷阱 坑[8~15],但由于碱与不同晶体面反应速度不同,利用 碱刻蚀技术只能在多晶面上获得取向不同的棱形条 或台阶式的绒面结构,这种结构的表面反射率比较 高^[16,17]。Gangopadhyay 等^[18] 采用 NaOH-NaOCl 液 体刻蚀多晶硅绒面,样品表面呈台阶式结构,表面平 均反射率高达 25%以上; Madhu 等^[19]利用阳极极化 技术和碱液刻蚀相结合,获得的多晶硅表面布满大开 口的陷阱坑,但表面有大量的小孔,这样会增大表面 漏电流,降低太阳能电池的转换效率。这些实验研究 推动了多晶硅太阳电池的发展,但多晶硅绒面的形貌 与反射率的关系、如何优化陷阱坑的结构等还没有相 关文献报道。

本文提出一种多晶硅表面陷阱坑内表面第二次 刻蚀的绒面结构模型,利用测不准原理,分析了光子 照射到绒面后光子散射方向与绒面凹凸点尺寸的关 系,提出了对多晶硅表面绒面陷阱坑内表面再次刻 蚀的设想,利用光学傅里叶变换分析了绒面陷阱坑 形貌与反射率的关系。实验研究碱液修饰的多晶硅 不同晶面的形貌,测量对应的表面反射率,发现多晶 硅在改良的碱液中能被刻蚀出低反射率的陷阱坑, 这与模型分析结果基本吻合。

2 陷阱坑内表面高次绒面的陷光效应 机理

多晶硅表面制绒主要是让光滑的晶体硅表面密 集分布有一定深度的凹坑,如图 1(a)所示。当光照 射到晶体硅表面时,光在凹坑内多次反射和折射,从 而使更多的光子进入晶体硅中,一般认为:光在陷阱 坑里的往返次数与凹坑的深度有关,陷坑深度越深, 光在硅表面反折次数越多,光进入硅的机会越大。 但光在陷阱坑内的反射和折射次数还与凹坑形状有 关。如果多晶硅表面凹坑内表面布满了半球状的凹 凸点,光在凹坑内的反射和折射次数将成倍增加,这 将极大地降低绒面的反射率,如图 1(b)所示。

图 1 多晶硅(a)表面理想化的绒面结构;(b)光在其表面陷阱里光的折射模型和(c)光子照射到一个凸点上的反射模型 Fig. 1 (a) Ideal texture structure in multicrystalline Si surface; (b) the model of light reflection and refraction in the trap; (c) the possible reflection model of a photon on a salient dot

如果陷阱坑内表面布满了凹凸点,一个光子进 入凹坑而刚好照射到一个凹凸点上,如图 1(b)所 示。其光子的动量测不准与凹凸点大小关系为

$$d\Delta p \geqslant \frac{h}{2\pi},\tag{1}$$

式中d是凸点直径, Δp 是动量的测不准量,h是普

朗克常量。光子照射到小球后其动量最大的测不准 量为

$$\Delta p_{\max} = 2 \, \frac{h}{\lambda}.\tag{2}$$

当光照射到小球后,要使光以小球为中心向四周散 射光子,则小球直径必须达到

 $d \leq \lambda/(4\pi)$. (3)如果多晶硅表面布满了凹凸点,而凹凸点直径满足 上述条件,则光子就有可能沿垂直于此凸点表面的 任意方向传播,如图1(c)所示。如果小孔内表面都 布满了小球的绒面,则光进入如图 1(b)的小孔后, 孔内表面的任何一个凸点都相当于一个子波源,每 个子波源都向周围发射电磁波,则在孔腔内除子波 源外的任意一点总电场强度为

$$E(x, y, z) = \iint_{S} A(x', y', z') \frac{\exp(ikr)}{r} dS', \quad (4)$$

式中E(x,y,z)是孔内表面某点(x,y,z)处的电场 强度,A(x', y', z') 是腔内子波源的振幅因子,dS 是(x', y', z')处附近的微元面积,r是孔内表面某点 (x,y,z) 到子波源(x',y',z') 之间的距离,k 是波 数。则内表面任意一点(x,y,z)光强度为

$$I(x,y,z) = E(x,y,z)E^*(x,y,z) = \left[\iint_S A(x',y',z') \frac{\exp(ikr)}{r} \mathrm{d}S'\right] \left[\iint_S A(x',y',z') \frac{\exp(ikr)}{r} \mathrm{d}S'\right]^*, \quad (5)$$

式中S代表孔内表面积。如图1所示,球形孔内光的总强度应该是孔内所有点光强度的叠加,所以孔内总光 强度为

$$I = \sum I(x, y, z) = \iint I(x, y, z) dS = \oiint \left[\iint_{S} A(x', y', z') \frac{\exp(ikr)}{r} ds' \right] \left[\iint_{S} A(x', y', z') \frac{\exp(ikr)}{r} ds' \right]^{*} dS,$$
(6)

式中 dS 是(x,y,z)处附近的微元面积。由此,凹坑开口处逃逸光强度为

$$I' = \iint_{S_0} I(x, y, z) dS = \iint_{S_0} \left[\iint_{S} A(x', y', z') \frac{\exp(ikr)}{r} dS' \right] \left[\iint_{S} A(x', y', z') \frac{\exp(ikr)}{r} dS' \right]^* dS, \tag{7}$$

式中 S。是小孔面积。则光子从孔内逃逸的概率 P 可近似处理为

$$P = \frac{I'}{I+I'} \approx \frac{S_0}{S+S_0}.$$
 (8)

如小孔内表面再次绒面,则孔内总的表面积会 增加。如陷阱坑内表面积增加到 nS,则光子被俘获 的概率为

$$P = \frac{nS}{nS + S_0},\tag{9}$$

式中n是内表面高次绒面时表面积增大系数,则进

入多晶硅的总光强度可表示为

$$I_{\rm T} = \frac{I_{\rm o} n S_{\rm o} S}{n S + S_{\rm o}}, \qquad (10)$$

式中 I₀ 为入射光强度。如果面积为 S'₀ 的一光滑表面 被分为N个U形坑,则每个凹型坑开口面积为 S'_0/N , 由(10)式可以推导出进入多晶硅的光强度为

$$I'_{\rm T} = \frac{I_{\rm o} \, nNS'_{\rm o} S}{nNS + S'_{\rm o}}.$$
 (11)

由(11)式可见:1)要获得低反射率的多晶硅绒 面,应尽可能使表面上布满 U 字形陷阱坑,陷阱坑

图 2 4 种多晶硅表面具有低反射率的绒面结构模型 Fig. 2 Four structures of multicrystalline Si surface textured with low reflectance

0324001-3

越多,则 N 越大,光子进入多晶硅的概率越大;2)在 陷阱坑数量 N 一定的条件下, U 字形陷阱坑要达到 一定的深度,这样才有可能使其内表面积增加;3)使 陷阱坑内表面第二次绒面化,即使陷阱坑表面上第 二次绒面化,使表面形成波浪形起伏形貌,并且使表 面布满凹凸点,点的大小满足(3)式,同时使 S 最 大,如图 2(a)所示的绒面结构,则同时能保证 S 和 n 较大,如此能大大增加光进入多晶硅的概率,进入多 晶硅中的光强度增加,使进入多晶硅的光子数增多, 表面反射率降低。图 2(b) 所示的结构虽然也有非 常均匀的陷阱坑,如内表面光滑,特别是陷阱坑的底 面光滑时,相当于底面没有被绒面化,n比较小,从 而导致整个绒面的反射率高。图 2(d)所示的结构相 当于单晶硅表面金字塔结构,也会导致光在塔面之间 多次反射折射,光的反射率比较低。如果陷阱坑表 面上存在二次或者三次绒面,如图 2(c)所示的结构 模型,则光在斜面之间反射折射次数成倍增加,这样 也能有效降低光反射率。由此可以断定图 2(a), (c),(d),(b)中陷阱坑槽模型表面反射率依次升高。

3 实验结果与讨论

实验选用面积为 10 cm×10 cm,厚度 180~ 200 μm,电阻率为 0.5~1.5 Ω·cm 掺 B 的 P 型多晶

硅片,硅片表面形貌使用扫描电子显微镜(SEM)观察,反射率使用型号为 D8(KD-D807-2)的积分反射 仪测量。

普通碱腐蚀液的配方为 NaOH(4.8 g) + H_2O (408 mL) + C₂H₅OH (49 mL), 刻蚀温度控制在 78 ℃~80 ℃之间,腐蚀时间为 20 min。腐蚀结束后, 用大量蒸馏水冲洗,再用二次去离子水在清洗槽中洗 净,晾干。将刻蚀的多晶硅样品切割成 2 mm×2 mm 大小,依次放置在 SEM 测试样品金属台上,用型号为 HTCY/JS-1600的小型离子喷金仪对样品进行喷金, 时间为 30 s。喷金的主要目的是使得样品导电,用金 层复形样品表面,同时减小样品中的激发体积,提高 观测倍率以提高信号产额,提高图像信噪比。喷金完 成后,用 SEM 观察样品的表面形貌。碱液刻蚀的 多晶硅表面 SEM 图如图 3 所示。根据文献 [20] 模 拟计算结果,可以判断图 3(a)和(b)分别对应多晶 硅表面[311]和[321]晶面。由图 3(a)中可见,碱液 刻蚀多晶硅[311]晶面呈严重倾斜的金字塔状,这种 结构使光在塔表面之间反折射次数减少,导致表面 反射率高,实验测量平均反射率高达30%以上。 图 3(b)显示[321]晶面几乎是台阶式的绒面,这种 结构导致光在其表面的反折射次数非常少,其表面 陷光效应很差。

图 3 碱液刻蚀的多晶硅晶面 SEM 图

Fig. 3 SEM micrographs of multicrystalline Si textured with alkaline solution

将传统碱液改良后 [添加剂 2 mL + NaOH (4.8g)+H₂O(408 mL)+C₂H₅OH₃(48 mL)]对 多晶硅刻蚀,刻蚀温度仍然控制在 78 ℃~80 ℃之 间,腐蚀时间为 20 min。刻蚀后多晶硅表面放大 5000 倍的 SEM 图如图 4(a)所示。结合文献[17]中 给出的碱液刻蚀多晶硅表面形状的理论模拟图,可 见图 4(a)对应多晶硅的[100]晶面。从图 4(a)可 见,刻蚀出多晶硅表面[100]晶面上分布着许多小硅 山脉,这些小硅山脉上又被刻蚀出许多非常致密的 小山丘;而小山脉之间存在许多相对峡谷,峡谷呈 V 字形,上宽下小,开口 3~6 μm,长 10~20 μm,如 图 4(a)中白色实线包围的峡谷。仔细观察图 4(a), 可以看出 V 字形峡谷表面上有许多皱纹状的台阶, 这相当于在陷阱坑内表面二次绒面。此外,图 4(a) 中白色点线包围的区域几乎都是由一些小金字塔组 成,小金字塔的密度非常高,[100]晶面上的这种结 构非常有利于提高表面陷光效应。图 4(b)是放大 800 倍的[100]面 SEM 图,从图中可以看出,[100] 面上小硅山脉密度非常高,即小峡谷陷阱槽密度很 高。图 4 中绒面上的陷阱坑接近于图 2(c)中的结 构模型,这种结构陷光效应好,表面反射率比较低。

图 4 多晶硅[100]晶面经过改性后碱液刻蚀表面的 SEM 图 Fig. 4 SEM micrographs of [100] plane textured with the refined alkaline solution

图 5(a)显示[110]晶面有许多陷阱坑,陷阱坑 呈长方形。这些长方形的陷阱坑上面开口大,底部 小,从开口到底部逐渐过渡,如图 5(a)中白色实线 包围的陷阱坑。仔细观察,陷阱坑侧面都不是光滑 的表面,表面上呈逐渐过渡的台阶,这相当于二次绒 面。陷阱坑长 10~20 μ m,宽度为 2~4 μ m,在边长 为 30 μ m 的正方形内约有 5 个陷阱坑,在腐蚀坑之 间存在许多短的半三角状棱形条,如图 5(a)中白色

三角状棱形条能导致光在其斜表面上多次反折射, 也能降低光的反射率。图 5(b)是放大 800 倍的多 晶硅[110]晶面的 SEM 图。由图 5(b)可见,[110] 晶面上半三角状棱形条密度非常高,只是陷阱坑密 度稍小一些。图 5 中绒面上的陷阱坑相当于 图 2(b)和(d)中模型的混合,这种结构对应的陷光 效应稍差。

点线包围的区域。棱形条的表面凹凸不平,这种半

图 5 多晶硅[110]晶面经过改性后碱液刻蚀表面的 SEM 图 Fig. 5 SEM micrographs of [110] plane textured with the refined alkaline solution

图 6(a)显示的结构是多晶硅[111]晶面。由 图 6(a)可见,[111]晶面分布着近似畸变四边形的 腐蚀坑,陷阱坑呈喇叭口状,上大下小。陷阱坑宽度 为 2~8 μm,长度约 10 μm。在长为 30 μm 的正方 形内约有 8 个陷阱坑,陷阱坑表面凹凸不平,在陷阱 坑之间是布满小塔的绒面。图 6(b)是放大 800 倍 的多晶硅[111]面 SEM 图。由图 6(b)可见,[111] 面上陷阱坑密度非常高。图 6(a)中绒面上的陷阱 坑接近于图 2(a)中的模型,多晶硅[111]晶面这种 陷阱坑会使光在凹坑内多次反射折射,这种结构具 有非常强的陷光效应,表面反射率比较低。

图 7 是多晶硅片碱液刻蚀的表面反射率曲线, 曲线 a 为多晶硅[110]晶面的反射率曲线,平均反射 率大于 23%;曲线 b 为碱腐蚀多晶硅表面[100]晶 面的反射率曲线,平均反射率为 22%;曲线 c 为多 晶硅表面[111]晶面的反射率曲线,在波长为 400~ 900 nm 范围内平均反射率约为 20%。图 7 中的 3 条反射曲线大体反映了陷阱坑不同形貌对其表面反 射率的影响,[111]晶面有许多 U 字形陷阱坑,对应 的表面反射率最低,而[110]晶面的反射率相对高一 些,与分析基本吻合。

多晶硅表面反射率不但与表面陷阱坑形貌有 关,还与单位面积上陷阱坑的数量有关,但是目前的 碱液刻蚀技术很难在多晶硅不同晶体面上获得密度 相同的陷阱坑,从实验上完整反映形貌与反射率的 关系是非常困难的。因此,图 7 中的曲线只能近似 反映形貌与反射率的关系。

图 6 多晶硅[111]晶面经过改性后碱液刻蚀表面的 SEM 图 Fig. 6 SEM micrographs of [111] plane textured with the refined alkaline solution

图 7 碱液刻蚀的多晶硅表面反射率曲线 Fig. 7 Reflectance curves of multicrystalline Si textured vary with alkaline solution

必须指出,对于多晶硅太阳能电池,并不是反射 率最低的绒面能量转换效率最高,还必须考虑到绒 面钝化效果。众所周知,去掉多晶硅表面上的机械 损伤层后,多晶硅表面仍然存在许多缺陷能级以及 对应的缺陷态密度。表面缺陷态密度越大,太阳能 电池内光生载流子越容易集中在硅表面,导致太阳 能电池的能量转换效率降低。为了消除硅表面的缺 陷态,在太阳能电池的产生过程中,通常都要在硅表 面镀上一层薄膜进行钝化处理,以消除硅表面的缺 陷态。理论上,没有任何结构缺陷的晶体表面最容 易镀上薄膜,而且薄膜内原子分布均匀,表面钝化效 果最佳。为了降低硅表面反射率对硅进行的绒面处 理是以增加硅表面缺陷态密度为代价的。一般越尖 锐的地方沉积薄膜的难度越大,即便勉强镀上薄膜, 在冷却过程中薄膜和硅由于膨胀系数不同会导致崩 裂,使硅表面和薄膜之间有裂缝存在。根据文献 [21]中的描述可知,硅表面尖锐的地方很难钝化,所 以多晶硅表面制绒,除了保证降低反射率外,还必须 能保证绒面下一步的钝化效果,而本文给出的陷阱 坑模型是比较容易钝化的。

4 结 论

提出了多晶硅表面低反射率的陷阱坑模型,利 用光学傅里叶变换推导了光子逃逸陷阱坑概率与绒 面陷阱坑形貌的关系。理论分析表明,多晶硅绒面 化后陷阱坑密度大,陷阱坑星 U或 V字形形貌,内 表面上布满凸点的陷阱坑模型反射率比较低,但光 滑的 U字形陷阱坑模型反射率就比较高。用改良 的碱液刻蚀了多晶硅绒面,用 SEM 观察多晶硅表 面结构。实验研究结果显示碱液在多晶硅表面上能 刻出内表面凹凸不平的陷阱坑,内表面非光滑的 U 字形陷阱坑有良好的低反射特性,与低反射绒面模 型基本相符。

参考文献

1 Zhou Zhou, Zhou Jian, Sun Xiaowei *et al.*. Design of an irregularly shaped DBR for thin film solar cells [J]. Acta Optica Sinica, 2011, **31**(7): 0731002

周 舟,周 健,孙晓玮等.薄膜太阳能电池异型布拉格背反射 结构设计与制作[J].光学学报,2011,**31**(7):0731002

2 Wang Yunfeng, Li Ming, Lin Wenxian *et al.*. Performance analysis on solar cell modules of flat-plate and trough concentrating photovoltaic system [J]. *Acta Optica Sinca*, 2009, 29(8); 2287~2292

王云峰,李 明,林文贤等.平板式与槽式聚光太阳能电池组件性能分析[J].光学学报,2009,**29**(8):2287~2292

3 Yuan Genfu, Yao Yansheng, Chen Xuehui *et al.*. Experimental study on the quality of material surface applied laser-chemical combined etching [J]. *Chinese J. Lasers*, 2010, **37** (1): 281~283

袁根福,姚燕生,陈雪辉等.激光和化学复合刻蚀加工表面质量的实验研究[J].中国激光,2010,**37**(1):281~283

- 4 X. S. Hua, Y. J. Zhang, H. W. Wang. The effect of texture unit shape on silicon surface on the absorption properties [J]. Sol. Energy Mater. Sol. Cells, 2010, 94(2): 258~262
- 5 M. Spiegel, C. Gerhards, F. Huster *et al.*. Industrially attractive front contact formation methods for mechanically V-textured multicrystalline silicon solar cells [J]. Sol. Energy Mater. Sol. Cells, 2002, **74**(1-4): 175~182
- 6 L. Dobrzański, A. Drygala. Laser processing of multicrystalline silicon for texturization of solar cells [J]. J. Materials Processing Technology, 2007, 191(1-3): 228~231

- 7 D. S. Ruby, S. Zaidi, S. Narayanan *et al.*, RIE-texturing of industrial multicrystalline silicon solar cells [J]. J. Sol. Energy Eng., 2005, **127**(1): 146~149
- 8 K. Lee, M. H. Ha, J. H. Kim *et al.*. Damage-free reactive ion etch for high-efficiency large-area multi-crystalline silicon solar cells [J]. Sol. Energy Mater. Sol. Cells, 2011, 95(1): 66~68
- 9 K. Kim, S. K. Dhungel, S. Jung *et al.*. Texturing of large area multi-crystalline silicon wafers through different chemical approaches for solar cell fabrication [J]. Sol. Energy Mater. Sol. Cells, 2008, 92(8): 960~968
- 10 W. Weinreich, J. Acker, I. Gräber. The effect of H₂SiF₆ on the surface morphology of textured multi-crystalline silicon [J]. Semicond. Sci. Technol., 2006, 21(9): 1278~1286
- 11 J. An, Y. Shi, Z. Liu *et al.*. The influence of NH₄F on silicon etching in HF/HNO₃/H₂O system [C]. Proceedings of ISES World Congress 2007, 2009, 4: 1051~1054
- 12 S. W. Park, J. Kim, L. S. Hone. Application of acid texturing to multi-crystalline silicon wafers [J]. J. Korean Physical Society, 2003, 43(3): 423~426
- 13 P. Panek, M. Lipiński, J. Dutkiewicz. Texturization of multicrystalline silicon by wet chemical etching for silicon solar cells[J]. J. Mater. Sci., 2005, 40(6): 1459~1463
- 14 B. González-Díaz, R. Guerrero-Lemus, B. Díaz-Herrera et al.. Optimization of roughness, reflectance and photoluminescence for acid textured mc-Si solar cells etched at different HF/HNO₃ concentrations [J]. Materials Science and Engineering B, 2009, 159-160: 295~298

- 15 I. Zubel, M. Kramkowska. Development of etch hillocks on different Si (*h k l*) planes in silicon anisotropic etching [J]. Surface Science, 2008, 602(9): 1712~1721
- 16 I. Zubel, M. Kramkowska. Etch rates and morphology of silicon (h k l) surfaces etched in KOH and KOH saturated with isopropanol solutions [J]. Sensors and Actuators A, 2004, 115(2-3): 549~556
- 17 M. A. Gosálvez, K. Sato, A. S. Foster *et al.*, An atomistic introduction to anisotropic etching [J]. J. Micromech. Microeng., 2007, 17(4): S1~S26
- 18 U. Gangopadhyay, S. K. Dhungel, K. Kim *et al.*. Novel low cost chemical texturing for very large area industrial multicrystalline silicon solar cells [J]. *Semicond. Sci. Technol.*, 2005, **20**(9): 938~946
- 19 A. Madhu, B. Tobias, O. Ingermar. Electrochemical texturing of multicrystalline silicon in alkaline solution [C]. 24th European Photovoltaic Solar Energy Conference, 2009, 1779~1783
- 20 J. D. Hylton, A. R. Burgers, W. C. Sinke. Alkaline etching for reflectance reduction in multicrystalline silicon solar cells[J]. J. Electron. Soc., 2004, 151(6): G408~G427
- 21 Zhou Chunlan, Wang Wenjing, Zhao Lei *et al.*. Preparation and characterization of homogeneity and fine pyramids on the textured single silicon crystal [J]. *Acta Physica Sinica*, 2010, **59**(8): 5777~5783

周春兰,王文静,赵 雷等.单晶硅表面均匀小尺寸金字塔制备 以及特性研究[J].物理学报,2010,**59**(8):577~5783

栏目编辑:韩 峰